

## DBZ-003-1032004

Seat No. \_\_\_\_\_

B. C. A. (Sem. II) (CBCS) (W.E.F. 2016) Examination July - 2022

## CS-10 : Mathematical & Statistical Foundation of Computer Science

(Old Course)

Faculty Code: 003

Subject Code: 1032004

Time :  $2\frac{1}{2}$  Hours] [Total Marks : 70

**Instruction**: Answer all the questions.

- 1 (a) Answer the following questions in brief: 4
  - (1) Find the value of determinant  $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ .
  - (2) The value of a determinant is unchanged if its corresponding rows and columns are interchanged. (True or False)
  - (3) How many elements in a 3×3 determinant?
  - (4) Determinant of a matrix A is denoted by \_\_\_\_\_.
  - (b) Attempt any **one** out of two:
    - (1) If  $A = \begin{bmatrix} -1 & -1 \\ 0 & 9 \end{bmatrix}$  then find |A|.
    - (2) If  $D = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 8 & 12 \\ 5 & 14 & 9 \end{vmatrix}$  then find the value of D.
  - (c) Attempt any **one** out of two:
    - (1) Solve: 2x + y 3 = 0, 2x + 3y 5 = 0 by Crammer's rule.
    - (2) If  $A = \begin{vmatrix} 1 & 2 & 1 \\ 2 & k & 2 \\ -3 & 2 & 1 \end{vmatrix} = 0$  then find k.

DBZ-003-1032004 ]

1

[ Contd...

3

(d) Attempt any one out of two:

- $\mathbf{5}$
- (1) Explain any two properties of determinants.
- (2) Solve: 3x + 2y z 4 = 0, 2x + y 1z 2 = 0, x + 2y 2z 1 = 0 by Crammer's rule.
- 2 (a) Answer the following questions in brief: 4
  - (1) Define Diagonal matrix.
  - (2) Define Sub matrix.
  - (3) Define Symmetric matrix.
  - (4) Define Null matrix.
  - (b) Attempt any one out of two:

- 2
- (1) If  $A = \begin{bmatrix} 3 & 4 \\ -1 & -6 \end{bmatrix}$  and  $B = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix}$  then find A + B and A B.
- (2) If  $A = \begin{bmatrix} 3 & 1 & 3 \\ 2 & 1 & 4 \end{bmatrix}$  and  $B = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 3 & 0 \end{bmatrix}$  then find A + B.
- (c) Attempt any one out of two:

- 3
- (1) If  $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$  then show that  $A^3 = 4A$ .
- (2) If  $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$  then find adj A.
- (d) Attempt any one out of two:

- 5
- (1) Find the inverse of the matrix  $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ .
- (2) If  $A = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$ , then show that adj A = A.

- 3 (a) Answer the following questions in brief:

  (1) Find the distance between two points (1, 2) and (-3, 5).

  (2) Define Intersection of two sets.
  - (3) Find the midpoint of line segment joining points A(2, 3) and B(2, 1).
  - (4) Define power set.
  - (b) Attempt any **one** out of two:

    (1) If the distance between two points A(1, 2) and B(x, 5) is 5 then find x.
    - (2) Define Cartesian products of two sets with example.
  - (c) Attempt any **one** out of two:

    (1) Prove that the triangle with vertices at the points (4, 2), (2, 2) and (4, 4) is right angled.
    - (2) If  $A = \{1, 2, 3, 4\}$ ,  $B = \{1, 3, 4\}$ ,  $C = \{1\}$  then prove that  $A \times (B \cap C) = (A \times B) \cap (A \times C)$ .
  - (d) Attempt any one out of two:
    (1) Explain De'Morgan laws with logical proof.
    (2) Find the area of the triangle whose vertices are A(-323), B(1, -2) and C(5, 6).
- 4 (a) Answer the following questions in brief:
  4 (1) Find mean for the data 3, 6, 4, 7, 5, 4, 5, 6.
  - (2) Define Range.
  - (3) Define Mode.
  - (4) Define Median.
  - (b) Attempt any **one** out of two:
    (1) For the data 2, 3, 5, 9, 8, 11, 5, 14, 5, 8. Find
    Mode.
    - (2) For the data 1, 3, 6, 8, 8, 10, 5, 11, 7, 8. Find Mode.
  - (c) Attempt any **one** out of two:

    (1) Calculate the mean for the following frequency distribution.

|  | х | 150 – | 155 – | 160 – | 165 – | 170 – | 175 – | 180 – |
|--|---|-------|-------|-------|-------|-------|-------|-------|
|  |   | 155   | 160   | 165   | 170   | 175   | 180   | 185   |
|  | f | 8     | 10    | 20    | 17    | 15    | 4     | 1     |

2

(2) Calculate the median for the following frequency distribution.

|   | C1    | 5 – | 10- | 15- | 20- | 25- | 30- | 35 – | 40 – |
|---|-------|-----|-----|-----|-----|-----|-----|------|------|
|   | Class | 10  | 15  | 20  | 25  | 30  | 35  | 40   | 45   |
| Ī | f     | 5   | 6   | 15  | 10  | 5   | 4   | 2    | 2    |

(d) Attempt any one out of two:

5

(1) Calculate the standard deviation for the following table.

| Class     | 20 - 25 | 25-30 | 30-35 | 35 - 40 | 40 - 45 | 45 - 50 |
|-----------|---------|-------|-------|---------|---------|---------|
| Frequency | 170     | 110   | 80    | 45      | 40      | 35      |

(2) The median and mode of the following wage distribution are known to be Rs. 33.50 and Rs. 34 respectively. Find the value of k.

| Wages:    | 0 — | 10- | 20 – | 30 – | 40 – | 50 – | 60 – | T.4-1 |  |
|-----------|-----|-----|------|------|------|------|------|-------|--|
| in (Rs.)  | 10  | 20  | 30   | 40   | 50   | 60   | 70   | Total |  |
| Frequency | 6   | 16  | k    | 100  | 40   | 6    | 4    | 230   |  |

5 (a) Answer the following questions in brief:

4

- (1) Define Sequence.
- (2) Define Arithmetic Progression.
- (3) If 1, 4, 7, 10, \_\_\_\_\_ is a sequence then find its  $10^{th}$  term.
- (4) In A.P.,  $T_n =$ \_\_\_\_\_

(b) Attempt any **one** out of two:

2

- (1) If the sum of an A.P. is  $2n^2 + 3n$  then find its  $20^{th}$  term.
- (2) For an A.P.  $T_5$  = 10 and  $T_{10}$  = 40 then find  $T_{20}$ .
- (c) Attempt any one out of two:

3

- (1) If the tenth term of AP is 5/2 and its first term is 19/4 then find d.
- (2) Find the sum of first 100 natural numbers.
- (d) Attempt any **one** out of two:

5

- (1) Find the sum of all natural numbers between 200 and 400 which are divisible by 7.
- (2) Find three numbers in G.P, such that their product is 216 and their sum is 26.